extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×Dic3)⋊1C23 = S3×D4×D5 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 60 | 8+ | (C5xDic3):1C2^3 | 480,1097 |
(C5×Dic3)⋊2C23 = C2×D5×C3⋊D4 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | | (C5xDic3):2C2^3 | 480,1122 |
(C5×Dic3)⋊3C23 = C2×D10⋊D6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | | (C5xDic3):3C2^3 | 480,1124 |
(C5×Dic3)⋊4C23 = S3×C2×C4×D5 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | | (C5xDic3):4C2^3 | 480,1086 |
(C5×Dic3)⋊5C23 = C2×S3×D20 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | | (C5xDic3):5C2^3 | 480,1088 |
(C5×Dic3)⋊6C23 = C22×D5×Dic3 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):6C2^3 | 480,1112 |
(C5×Dic3)⋊7C23 = C22×D30.C2 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):7C2^3 | 480,1117 |
(C5×Dic3)⋊8C23 = C22×C3⋊D20 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):8C2^3 | 480,1119 |
(C5×Dic3)⋊9C23 = S3×D4×C10 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | | (C5xDic3):9C2^3 | 480,1154 |
(C5×Dic3)⋊10C23 = C2×C10×C3⋊D4 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):10C2^3 | 480,1164 |
(C5×Dic3)⋊11C23 = S3×C22×C20 | φ: trivial image | 240 | | (C5xDic3):11C2^3 | 480,1151 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×Dic3).1C23 = C2×D5×Dic6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).1C2^3 | 480,1073 |
(C5×Dic3).2C23 = C2×D20⋊S3 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).2C2^3 | 480,1075 |
(C5×Dic3).3C23 = D20.38D6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).3C2^3 | 480,1076 |
(C5×Dic3).4C23 = D20.39D6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | 4- | (C5xDic3).4C2^3 | 480,1077 |
(C5×Dic3).5C23 = C30.C24 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).5C2^3 | 480,1080 |
(C5×Dic3).6C23 = C2×D15⋊Q8 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).6C2^3 | 480,1082 |
(C5×Dic3).7C23 = C2×C12.28D10 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).7C2^3 | 480,1085 |
(C5×Dic3).8C23 = D5×C4○D12 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).8C2^3 | 480,1090 |
(C5×Dic3).9C23 = D20⋊24D6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).9C2^3 | 480,1092 |
(C5×Dic3).10C23 = D20⋊25D6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).10C2^3 | 480,1093 |
(C5×Dic3).11C23 = D20⋊29D6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 4+ | (C5xDic3).11C2^3 | 480,1095 |
(C5×Dic3).12C23 = C15⋊2- 1+4 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | 8- | (C5xDic3).12C2^3 | 480,1096 |
(C5×Dic3).13C23 = D5×D4⋊2S3 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 8- | (C5xDic3).13C2^3 | 480,1098 |
(C5×Dic3).14C23 = S3×D4⋊2D5 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 8- | (C5xDic3).14C2^3 | 480,1099 |
(C5×Dic3).15C23 = D30.C23 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 8+ | (C5xDic3).15C2^3 | 480,1100 |
(C5×Dic3).16C23 = D20⋊13D6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 8- | (C5xDic3).16C2^3 | 480,1101 |
(C5×Dic3).17C23 = D12⋊14D10 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 8+ | (C5xDic3).17C2^3 | 480,1103 |
(C5×Dic3).18C23 = D20.29D6 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | 8- | (C5xDic3).18C2^3 | 480,1104 |
(C5×Dic3).19C23 = C30.33C24 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | 8+ | (C5xDic3).19C2^3 | 480,1105 |
(C5×Dic3).20C23 = S3×Q8×D5 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 8- | (C5xDic3).20C2^3 | 480,1107 |
(C5×Dic3).21C23 = S3×Q8⋊2D5 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 8+ | (C5xDic3).21C2^3 | 480,1109 |
(C5×Dic3).22C23 = C2×C30.C23 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).22C2^3 | 480,1114 |
(C5×Dic3).23C23 = C2×Dic3.D10 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).23C2^3 | 480,1116 |
(C5×Dic3).24C23 = C15⋊2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).24C2^3 | 480,1125 |
(C5×Dic3).25C23 = C2×D20⋊5S3 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).25C2^3 | 480,1074 |
(C5×Dic3).26C23 = C2×S3×Dic10 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).26C2^3 | 480,1078 |
(C5×Dic3).27C23 = C2×D60⋊C2 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).27C2^3 | 480,1081 |
(C5×Dic3).28C23 = C2×D6.D10 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).28C2^3 | 480,1083 |
(C5×Dic3).29C23 = S3×C4○D20 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).29C2^3 | 480,1091 |
(C5×Dic3).30C23 = D20⋊14D6 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | 8+ | (C5xDic3).30C2^3 | 480,1102 |
(C5×Dic3).31C23 = D12.29D10 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | 8- | (C5xDic3).31C2^3 | 480,1106 |
(C5×Dic3).32C23 = D5×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | 8+ | (C5xDic3).32C2^3 | 480,1108 |
(C5×Dic3).33C23 = D20⋊16D6 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | 8- | (C5xDic3).33C2^3 | 480,1110 |
(C5×Dic3).34C23 = D20⋊17D6 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | 8+ | (C5xDic3).34C2^3 | 480,1111 |
(C5×Dic3).35C23 = C2×Dic5.D6 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).35C2^3 | 480,1113 |
(C5×Dic3).36C23 = C22×C15⋊Q8 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).36C2^3 | 480,1121 |
(C5×Dic3).37C23 = C2×C10×Dic6 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).37C2^3 | 480,1150 |
(C5×Dic3).38C23 = C10×C4○D12 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).38C2^3 | 480,1153 |
(C5×Dic3).39C23 = C10×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).39C2^3 | 480,1155 |
(C5×Dic3).40C23 = C5×D4⋊6D6 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).40C2^3 | 480,1156 |
(C5×Dic3).41C23 = S3×Q8×C10 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).41C2^3 | 480,1157 |
(C5×Dic3).42C23 = C5×Q8.15D6 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).42C2^3 | 480,1159 |
(C5×Dic3).43C23 = C5×S3×C4○D4 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).43C2^3 | 480,1160 |
(C5×Dic3).44C23 = C5×D4○D12 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).44C2^3 | 480,1161 |
(C5×Dic3).45C23 = C5×Q8○D12 | φ: C23/C22 → C2 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).45C2^3 | 480,1162 |
(C5×Dic3).46C23 = C10×Q8⋊3S3 | φ: trivial image | 240 | | (C5xDic3).46C2^3 | 480,1158 |